Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Genet ; 14: 1221148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790706

RESUMO

Multi-parent populations contain valuable genetic material for dissecting complex, quantitative traits and provide a unique opportunity to capture multi-allelic variation compared to the biparental populations. A multi-parent advanced generation inter-cross (MAGIC) B-line (MBL) population composed of 708 F6 recombinant inbred lines (RILs), was recently developed from four diverse founders. These selected founders strategically represented the four most prevalent botanical races (kafir, guinea, durra, and caudatum) to capture a significant source of genetic variation to study the quantitative traits in grain sorghum [Sorghum bicolor (L.) Moench]. MBL was phenotyped at two field locations for seven yield-influencing traits: panicle type (PT), days to anthesis (DTA), plant height (PH), grain yield (GY), 1000-grain weight (TGW), tiller number per meter (TN) and yield per panicle (YPP). High phenotypic variation was observed for all the quantitative traits, with broad-sense heritabilities ranging from 0.34 (TN) to 0.84 (PH). The entire population was genotyped using Diversity Arrays Technology (DArTseq), and 8,800 single nucleotide polymorphisms (SNPs) were generated. A set of polymorphic, quality-filtered markers (3,751 SNPs) and phenotypic data were used for genome-wide association studies (GWAS). We identified 52 marker-trait associations (MTAs) for the seven traits using BLUPs generated from replicated plots in two locations. We also identified desirable allelic combinations based on the plant height loci (Dw1, Dw2, and Dw3), which influences yield related traits. Additionally, two novel MTAs were identified each on Chr1 and Chr7 for yield traits independent of dwarfing genes. We further performed a multi-variate adaptive shrinkage analysis and 15 MTAs with pleiotropic effect were identified. The five best performing MBL progenies were selected carrying desirable allelic combinations. Since the MBL population was designed to capture significant diversity for maintainer line (B-line) accessions, these progenies can serve as valuable resources to develop superior sorghum hybrids after validation of their general combining abilities via crossing with elite pollinators. Further, newly identified desirable allelic combinations can be used to enrich the maintainer germplasm lines through marker-assisted backcross breeding.

2.
G3 (Bethesda) ; 13(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36755443

RESUMO

Multiparent advanced eneration inter-cross (MAGIC) populations improve the precision of quantitative trait loci (QTL) mapping over biparental populations by incorporating increased diversity and opportunities to reduce linkage disequilibrium among variants. Here, we describe the development of a MAGIC B-Line (MBL) population from an inter-cross among 4 diverse founders of grain sorghum [Sorghum bicolor (L.) Moench] across different races (kafir, guinea, durra, and caudatum). These founders were selected based on genetic uniqueness and several distinct qualitative features including panicle architecture, plant color, seed color, endosperm texture, and awns. A whole set of MBL (708 F6) recombinant inbred lines along with their founders were genotyped using Diversity Arrays Technology (DArTseq) and 5,683 single-nucleotide polymorphisms (SNPs) were generated. A genetic linkage map was constructed using a set of polymorphic, quality-filtered markers (2,728 SNPs) for QTL interval-mapping. For population validation, 3 traits (seed color, plant color, and awns) were used for QTL mapping and genome-wide association study (GWAS). QTL mapping and GWAS identified 4 major genomic regions located across 3 chromosomes (Chr1, Chr3, and Chr6) that correspond to known genetic loci for the targeted traits. Founders of this population consist of the fertility maintainer (A/B line) gene pool and derived MBL lines could serve as female/seed parents in the cytoplasmic male sterility breeding system. The MBL population will serve as a unique genetic and genomic resource to better characterize the genetics of complex traits and potentially identify superior alleles for crop improvement efforts to enrich the seed parent gene pool.


Assuntos
Sorghum , Sorghum/genética , Estudo de Associação Genômica Ampla , Pool Gênico , Melhoramento Vegetal , Fenótipo , Grão Comestível/genética , Sementes/genética , Polimorfismo de Nucleotídeo Único
3.
Front Plant Sci ; 13: 790005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665170

RESUMO

Carbon partitioning in plants may be viewed as a dynamic process composed of the many interactions between sources and sinks. The accumulation and distribution of fixed carbon is not dictated simply by the sink strength and number but is dependent upon the source, pathways, and interactions of the system. As such, the study of carbon partitioning through perturbations to the system or through focus on individual traits may fail to produce actionable developments or a comprehensive understanding of the mechanisms underlying this complex process. Using the recently published sorghum carbon-partitioning panel, we collected both macroscale phenotypic characteristics such as plant height, above-ground biomass, and dry weight along with microscale compositional traits to deconvolute the carbon-partitioning pathways in this multipurpose crop. Multivariate analyses of traits resulted in the identification of numerous loci associated with several distinct carbon-partitioning traits, which putatively regulate sugar content, manganese homeostasis, and nitrate transportation. Using a multivariate adaptive shrinkage approach, we identified several loci associated with multiple traits suggesting that pleiotropic and/or interactive effects may positively influence multiple carbon-partitioning traits, or these overlaps may represent molecular switches mediating basal carbon allocating or partitioning networks. Conversely, we also identify a carbon tradeoff where reduced lignin content is associated with increased sugar content. The results presented here support previous studies demonstrating the convoluted nature of carbon partitioning in sorghum and emphasize the importance of taking a holistic approach to the study of carbon partitioning by utilizing multiscale phenotypes.

4.
G3 (Bethesda) ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33681979

RESUMO

Sorghum bicolor, a photosynthetically efficient C4 grass, represents an important source of grain, forage, fermentable sugars, and cellulosic fibers that can be utilized in myriad applications ranging from bioenergy to bioindustrial feedstocks. Sorghum's efficient fixation of carbon per unit time per unit area per unit input has led to its classification as a preferred biomass crop highlighted by its designation as an advanced biofuel by the U.S. Department of Energy. Due to its extensive genetic diversity and worldwide colonization, sorghum has considerable diversity for a range of phenotypes influencing productivity, composition, and sink/source dynamics. To dissect the genetic basis of these key traits, we present a sorghum carbon-partitioning nested association mapping (NAM) population generated by crossing 11 diverse founder lines with Grassl as the single recurrent female. By exploiting existing variation among cellulosic, forage, sweet, and grain sorghum carbon partitioning regimes, the sorghum carbon-partitioning NAM population will allow the identification of important biomass-associated traits, elucidate the genetic architecture underlying carbon partitioning and improve our understanding of the genetic determinants affecting unique phenotypes within Poaceae. We contrast this NAM population with an existing grain population generated using Tx430 as the recurrent female. Genotypic data are assessed for quality by examining variant density, nucleotide diversity, linkage decay, and are validated using pericarp and testa phenotypes to map known genes affecting these phenotypes. We release the 11-family NAM population along with corresponding genomic data for use in genetic, genomic, and agronomic studies with a focus on carbon-partitioning regimes.


Assuntos
Sorghum , Carbono , Ligação Genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Sorghum/genética
5.
G3 (Bethesda) ; 10(5): 1511-1520, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132167

RESUMO

Simple sugars are the essential foundation to plant life, and thus, their production, utilization, and storage are highly regulated processes with many complex genetic controls. Despite their importance, many of the genetic and biochemical mechanisms remain unknown or uncharacterized. Sorghum, a highly productive, diverse C4 grass important for both industrial and subsistence agricultural systems, has considerable phenotypic diversity in the accumulation of nonstructural sugars in the stem. We use this crop species to examine the genetic controls of high levels of sugar accumulation, identify genetic mechanisms for the accumulation of nonstructural sugars, and link carbon allocation with iron transport. We identify a species-specific tandem duplication event controlling sugar accumulation using genome-wide association analysis, characterize multiple allelic variants causing increased sugar content, and provide further evidence of a putative neofunctionalization event conferring adaptability in Sorghum bicolor Comparative genomics indicate that this event is unique to sorghum which may further elucidate evolutionary mechanisms for adaptation and divergence within the Poaceae. Furthermore, the identification and characterization of this event was only possible with the continued advancement and improvement of the reference genome. The characterization of this region and the process in which it was discovered serve as a reminder that any reference genome is imperfect and is in need of continual improvement.


Assuntos
Sorghum , Carboidratos , Genoma de Planta , Estudo de Associação Genômica Ampla , Poaceae/genética , Sorghum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...